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ABSTRACT
This paper describes a regression estimator which builds om the
investigation of the covariance structure in the full space of
explanatory variables aand response variable, It is robust since it
down weights outlying observations. A comparison to other robust
estimstors is included.
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1. INTRODUCTION

In recent years a variety of estimators for regression
parameters have been proposed. The driving force behind this kind
of research is the non-robustness of the ordinary least squares
(OLS) estimator. Just as in the case of location estimation the OLS
solution is unduly influoenced by departures from the "usnal” model
sssumptions. Two different approaches to robustification have been
proposed. The first one is due to Buber (1973) (see also Mosteller
and Tukey (1977)) and works by "Buberizing® residuals. The second
one is based on Hampel’s work (1974) and due to Krasker and Welsch
(1982). These methods bound the “influence® on the estimated
parameter vector.

In‘this paper we will describe an approach to the regression

problem which is based on covariance estimation. Instead of

attacking the problem of estimating the regression parameters
directly as solutions to some "normal equation™, we will view the
problem in a larger context and try to summarize what we learn from
the data in an estimated covariance matrix which contains all the
informetion we need. This approach has the advantage that the
response variable and the explanatory variables are treated
symmetrically., We can therefore compute any of the possible
regressions -- i.e. any choice of response -- in a single run

without having to recalculate weights.




In Section 2 we will give the formulas and discuss one

particular estimator based on an affine equivariant covariaace
estimator, Section 3 contains a (limited) comparison with other

i robust regression estimators through asymptotics and experimental
sampling.

h ’ 2. ROBUST REGRESSION THROUGH ROBUST COVARIANCES

- 2.1 DEFINITION OF TEE ESTIMATOR

Let z;’ = (z;',y;), i=1l,...,n be n vectors in B**! yhich are

created by n independent observations from the stochastic model
Y=p'X+E (2.1)

with fixed, unknown regression parameter § ¢ RP, random carrier

Xe BR? and random error E independent of the carcrier.

In order to describe the probability structure ia (2.1) two
distributions are needed. First the error distribution H(e/o) and
second the carrier distribution G(). Together with the independence
assumption in (2.1) these two determine the distribution of Z’ =
(X’',Y). As we have indicated there is at least one more parameter
of primary importance, namely the “scale” o ia our error
distribution. All of the bounded influence research is taking place
in a model like (2.1).

The classical solution to the inference problems posed by
(2.1) is based on the principle of least squares. In recent years

seversl alternative robust estimators d of B have beea proposed.




They all can be conveniently described by "normal equations”:

(11 3 x,r, = 0,z

= - (4
2 i [ Rp, ri i b x,

i

a b
21 I x, p(—) = 0 Huber (1973).
i=1 s
Here s is an auxillary or simultaneous estimate of the error
“scale” and p() is a somewhat arbitrary function which is usually

chosen in such a way that the efficiency at a central model like

H() = §() is high,

n r,
31 I w, oz e~ = 0 Mallows (1975),
i=1 s

Here w; is a weight which depends on (and possibly all the other

xj")-
n r,
4l 3w x, el ) = 0 Schweppe (1975).
i=1 v,

This form is optimal with respect to the heuristic notion of
bounded influence (Hampel (1974) and Krasker and Welsch (1982)). A

review of these estimators can be found in Maronna, Bustos and

Yohai (1979).

(1] gives the ordinary least squares estimator (oLs), [2]
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corresponds to the classical approach to robust regression and
there are two popular choices for the g—function:

(1) p(x) = gy (x) = maz(-k,min(k,x))

(ii) p(x) = bsqy(x) = 2/k (1 - (z/x)2)2 it -k |z |<x

=0 otherwise

The second one is preferable since it gives excellent protection
against heavy-tasiled error distributions. [3] and [4] are bounded
infloence estimators (see Hampel (1974)). Asymptotic optimality
theory tells us that estimators of the form [4] are preferable.

Dividing and multiplying each term in the sum by ri/(svi) we get

(4]

x

MB

i

which we immediately recognize as the normal equation of a weighted

least squares problem. The optimal weights are of the form

Ty

'k( )

S'i

Ty

where g, () is as ia (i) above and w, = (xi'S-lxi)-llz (S an
estimated covariance matrix of the carriers).

The theory behind this statement can be found in Krasker and Welsch

(1982),




We have started this section by introducing the vectors zZ; ¢
IP+1 which we get by joining the carriers z; to the observations
yi- Since regression deals with the linear dependence between these
two elements it is quite natural to summarize our data ZiseessZy at
a first stage by a covariance matrix and then extract the specific
information we are primarely interested in -- about § and o -- at

the second stage.

Remark: To implement the above program it seems advantageous to
take out tﬁe constant term in our regression model. This term
corresponds to a carrier identically equal to I and if wé allow for
it, we will be in the rather special position that all vectors z;
lie in a p-dimensional subspace of RP*1, The natural way to proceed
is to estimate the constant term via simaoltaneous location
estimation. This way our target will be the value of the regression
function at a central carrier valoe, The formulas we will present
are all written for the case where we do not estimate location.
These formulas can, however, easily be modified.

Let us define a robust variance-covariance matrix W' through

the implicit equation

1 a o1 .
- I u(z, VW z.) z,z,” = W (2.2)
Lt i) %%

where u() is a weight function such that v is Fisher consistent at

a multivariate Gaussian model, Such M-estimators of covariance

R R R O I UL VN VT F0Al R
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matrices are discussed and examined in Maronna (1976) (see also

Huber (1981)). Now we partition v

where V° is the pxp covariance matrix of the carriers, c* is the
pxl vector of carrier-response cross terms and e‘ is the total

variance of the response. In analogy to the OLS-case we finally put

estimated parameter b = vl c*

and estimated error variance s2 = ¢* - b'V% (2.3)

If we now look back we realize that the system of equations (2.2)

is equivalent to

1 n

:izj_'ixi r, = 0

1 n

- v, r: = '2 (2.4)
n i=1

1 a ' .

- 2 vz, I, = V , where

n i=1

the weights are w; = u(zi'w.-lzi) = u(xi'V‘_lxi + rizlsz) and 1,
= yi - xi'b.

proof: In order to get (2.4) from (2.2) we have to partition

according to the blocks of L E.g.

I'-;;- jt’ s .'n :‘ ;"'
e
LN .l. .l

g
[
PRIMY
'y P te
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1 a . 1
- 2 w,y.2,= ¢ = V b =(~ 37 w,x,2,)0b
pni=1 M7 n i=1 v

1 a .
= — 3 w, x, (x,b), which yields the first equation in

i 7 i
n i=1
(2.4).

Remarks:

(1) From (2.4) we imiediately infer that in the special case where
u{) = 1 we are 2lmost back at the usual OLS estimates for B

and 02.

{(2) It would be of interest for the sake of high breakdown (see
Huber (1981)) to estimate the covariance matrix via a high
breakdown estimator (Donoho and Huber (1983) and Stahel(1981)). At
the moment this does not seem to be practical, but we nevertheless
want to point out this important possibility. We plam to report our
results on an M-estimator approach as in (2.2), hoping that they
will be helpful.

The solution W° in (2.2), i.e. the estimated covariance matrix,
satisfies a very broad equivariance relation. If we transform the
data linearly Zi = Az; i=1l,...,n the covariance matrix will be
transformed as

¥y, F) = AN (zg,.z) A (2.9)

(affine equivariance).

The parameters of interest in (2.1) are f and o. The
equivariance relations we might wish to impose on an estimator of

these parameters are:
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(1) §; = nly; + r'xy)s ¥ = xy i=1,...,0 —
b(?lavo-;?n) = n(b(YI’---.yn) + 1) and
3(?1....:?11) = n s(y1;.-llyn)
(regression equivariance)
and (2.6)

(i) §; =y;3 T; = M x5 i=1,...,0 —

b(Fp.....5,) = W71 vy, ,y,) and
s(?l.....?n) = s(yl,....yn)

(carrier equivariance).

Regression equivariance means that an estimator behaves
ressonably if we add an exactly linear function of the carriers to
the response. The carriers are viewed as fixed and our answer b is
always defined in relation to them. Carrier equivariance is quite a
different concept. If the parametrization of our model (2.1) is
changed in a linear fashion, it then makes sense to use the inverse
transformation on the parameters.

The importance of (ii) lies in the fact that by transforming
our parametrization we can sometimes get parameters which we can
estimate Dbetter, i.e. with decreased variability. Carrier
equivariance lets us move between these different parametrizations

without inconsistencies.
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It is easily seen that affine equivariance (2.5) of our

covariance estimator is a sufficient condition to ensure (2.6).

Proof:
I 0 M O

Put A = . ‘or A = ia (2.5).
ny n 01

Remark: The robust estimators described at the beginning are most
easily described as solutions to a weighted least squares scheme
where the weights have to be found iteratively., It is easily seen
that regression equivariance and carrier equivariance are obtained
in the case where the final weights are invariant under the
transformations given in (2.6). Quantities which fulfill this
invariance requirement are standardized residuals ri/s and squared
standardized distances in the carrier space (xi'V.°lxi). where s is
a scale equivariant function of the residuals and v® is an affine
equivariant function of the carriers. In the case of the classical
Huber estimator the final weights only depends on ri/s. This
estimator -- fully iterated -— is therefore equivariant. If we use
a few-step version, i.e. we do not fully iterate but rather use a
pre—-fixed number of steps in some iteration scheme, the resulting
estimator will not be equivariant but hopefully nearly so.

The Kraser-Welsch estimator is equivariant as well., Its weights
depend on the product of standardized residuals times standardized

carrier distance. The Mallows estimator finally will be equivariant

if we are careful in the choice of carrier weights —— they should

rv_' -“_:".'.1—, .“

S
.

RN o
0]

'y



only depend on the standardized carrier distances.

2.2, ASYMPTOTIC PROPERTIES OF THE REGRESSION ESTIMATOR (2.3)

In this subsection we want to discuss the asymptotic properties
of a regression estimator defined through a covariance M-estimator
(2.2)., We saw in (2.4) that it corresponds to a weighted least
squares estimator whose weights depend on the sum of the squared
standardized residual and the squared standardized carrier
distance. Maronna (1976) develops the asymptotic theory for
covariance M-estimators. We plan to use these results and to look
what happens if we apply (2.3). But first let wus examine the
influence function (see Hampel (1974)).

In order to simplify the formulas we will first consider the
csse where the carrjier distribution G() (see beginning of Section
2) is symmetric with respect to each coordinate, i.e. the 2P
vectors (;‘1"°":‘p) for all possible choices of signs are
identically distributed with distribution G(). If in addition the
error distribution H(x/6) is symmetric the influence om the jth

component bj (j =1,...,p) in (2.3) is

X
IF, g (5e7,) = u(d)) s, —2l 2.7
J .J

where d4,% = (x,',y,) W1(G,H) (z,’,y,)" and r, = y, - B'(G,H)x,,

and 3 = ij + EG,H [n'(dz)szr2 2/6%2] (note that x; refers to the

jth component of x),
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In order to understand this formula we have to remember that
the influence fuaction is an asymptotic “tool” and that therefore
the population values of our estimators appear im the formula.
W(G,H) is defined through

W(G,H) = B [u(dz) (x'.y)'(x'.y)] (d2 = (x'.y) '—l(x'.y)')

EG.

and can be partitioned just as W (see (2.3)). Vj denotes the jth

j
diagonal element of W(G,H).
Remarks:
(1) If we do not impose the symmetry requiremeants on the carrier
distribution G() the influence on the vector b im (2.3) is

IFb,G,H (xo.y‘) u(df ) =, A—lxo.
where Ajk = ij + Eg.g (o’ (d2) 2r2/4% xj’k]'
Proof: Our estimator can be put into the usual M-estimator form,
i.e. we estimate the parameter &£ = (B, o, V) based on the data
ZyresosZy via 3 p(zi.g) = (0, Now we can apply the standard formulas
to get influence function (see Huber (1981)). Our p-function splits
into three parts sccording to

?1(z.8) =u(@® xr

vy (2,8) = u(@?) 2 - o2

snd p3(z,3) = u(d?) =x' - v,

The matrix D = Eg g [8¢/8{] bas the block form




L[5

where A is the matrix whichk turas ap in the iafluence for b. The

above block form is ensured if only the error distribution H(x/g)

is symmetric around O. <.

(2) The influence function for a general class of robust regression

estimators can be found in Maronna, Bustos and Yohai (1979).

(3) Tbe influence function gives a description of the bias

introduced by infinitesimal perturbations of an idesl model. It

turns out that & boonded influeace is desirable (see Hampel

(1971)). Under the strong symmetry conditions we have :*{¥

a A

s:p {'IFb,G.H (z,) [} = e const (G, H) s:p {cu(e)]. E::

° L

Proof: see (2.7) and note that W(G,H) = ding(wl.....w’.a). }j;:
e

Our estimator ((2.2) and (2.3)) has therefore s bounded influence R

function provided the weight function u(c) goes to zero fast enmough

as ¢ gets large. This is not surprising since the weight depends on ;

both the size of the residual as well as the distance form the ??;

center ip carrier space. i;;
The asymptotic normality of our estimates can be proved using ;i"

s standard result due to Huber (1967). The proof follows the same




steps as Maronna (1976). Unfortunately asymptotic normality is only
proved under the extremely stringent comdition that the joint
distribution of x and y is spherically symmetric up to an affine
transformation., This is an assumption which can possibly be
relaxzed, but another proof is required. The other regularity
conditions needed are boundedness and monotonicity conditions on
u{c) and cu(c), respectively. Under all of these assumptions it is
true that the estimate bj (see (2.3)) is asymptotically Gaussian
with mean Bj and asymptotic variance

2,.2 2 2
E; o [2°@°) £° x, “]

- 3 ] (see (2.7)),
a3

3

the components of b furthermore are independent,

Maronna (1976) showed that the breakdown properties of
covariance estimates of the form (2.2) are mot encouraging. As the
dimensionality of the 2z-space increases, i.e. if we add more
carriers, the breakdown point of W (see (2.2)) is necessarily
decreasing like 1/(1+dimensionality). The regression estimator
(2.3) which is based on W' has the same breakdown point, If we add
s contamination along an arbitray regression linme and let the
contaminating carrier value go to infimity the estimator breaks
down.

¥e have discussed above two types of properties. First the

behavior at the presumed ceatral model which is described by the

asymptotic parameters. And second the breakdown point which is a
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simple indicator for the behavior under severe deviations from the
central model. The asymptotic iafluence curve stands somewhat
inbetween. On one hand it provides a decompositon of the asymptotic
variance at the central model, on the other hand it is useful as an
indicator for the. behavior under perturbations of the linearity
sssumption.

In the next section we will use the formulas derived above to
give us numerical values. But these asymptotic findings are of
course of secondary importance. What we really need to know is the
small sample behavior. To see how well asymptotics predicts the
corresponding small sample values some simulation results for

samples of size 20 are included.

3. COMPARISON OF REGRESSION ESTIMATORS

In order to compare the various estimators discussed in
Section 2 we plan to do a small Monte Carlo study. To further
sinplify the questions involved we will restrict atteation to the
simple case p=1, i.e. to the model

y; = Bxy + e i=1,....n (3.1)
with random carriers (independent of the errors). For model (3.1)
the questions of how to handle a constant term does not appear and
(2.2) together with (2.3) defines a reasonable estimator of f. To

fully specify this estimator we need to define a weight function

u(c). A somewhat typical choice is
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Qk(c)

(3.2)
c(1l-exp(-k/2))

where g (c) = max(-k,min(c,k)) denotes Huber’s gp-function. The
justification for tbis paricular form of a weight function lies in
the fact that near the Gaussian error model & good behavior of the
asymptotic efficiency can be expected. The weight function is
chosen in such a way that the resulting estimator is Fisher
consistent at the Gaussian model.

We still have the constant k at our disposal. It determines
the trade-off between resistance and efficiency. For k=5.77 the
asymptotic variance of our estimator of B at the standard Gaussian
model (i.e. both the error distribation and the carrier
;: distribution are standard Gaussian) is 1,05 —— or the efficiency is

95%. This appears to be a reasonable normalization.

3.1 ASYMPTOTIC NUMBERS N

"‘ll..

oy
PRI )

'1 .

t

v vt

UL
»

. The sampling sitvation we take into consideration are

polyGaussians of the form

(1-¢) N(0,1) + ¢ N(0,v2) =: (e/<?) (3.3)
and will be used both as a model for errors as well as carriers. ?34

Table 3.1 contains the valoes of the asymptotic variance for

the regression estimator under consideration.

D TN
N .
.........
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Table I: asymptotic variance of b (see (2.3)), (slltlz) refers to
the carrier distribution, (czltzz) denotes the error distribution

(see (3.3)) ’

32/122
81/t 2 N(0,1) 0.1/9 0.1/25 0.05/100
1.33  1.39  1.16
0.1/9 0.71  0.90 0.96  0.79

0.1/25

I
I

N(0,1) | 1.08
I
| o.55 o0.69 0.74 0.61
I

0.05/100 0.77 0.97 1,03 0.86
(These values were computed numerically with s 24-point Gaussian
quadrature procedure)
®: normalization as discussed above

Since the covariance estimator (2.3) has bounded influence if
used with the weight function (3.2) its ssymptotic behavior depends
on the distribution of the carriers. Table I shows that this
dependence is quite remarkable. The first column combines standard
Gaussian errors with increasingly heavy tailed carrier
distributions, The least squares estimators are of course optimal
in these situations witb asymptotic variances of 1.00, 0.56, 0.29,

and 0.17 . The asymptotic efficiency of our estimator ias these

situations is therefore 95%, 79%, 53%, and 22%. It appears that the




normalization of bounded influence regression estimators is a non-
trivial wmatter if we want to achieve a fair comparison with
estimators which do not treat outliers im carrier space any
differently. Most of the information about the slope parameter §
(see (3.1)) in the first column of Table 3.1 lies exactly in the
points far out in carrier space. Disregarding this information
results in a big loss.

Maronna, Bustos and Yobai (1979) give tables similar to Table
I for a Mallows~type estimator and the Hampel-Krasker estimator.
Table II shows the numbers for the Mallows estimator ~— the Hampel-
Krasker estimator behaves similarly, but a bit worse overall
becanse of our normalization (the Hampel-Krasker estimator is the

"most robust” if we normalize this way!).

Table II: asymptotic variance of Mallows estimator with Huber

weight function, (11/112) refers to the carrier distribution,

(czltzz) denotes the error distribution (see (3.3))

lz/‘!zz
e;/v2 | NO,1) 0.1/9 0.1/25  0.05/100
N(0,1) | 1.08 1.42 1.61 1.42
0.1/9 | o0.66 0.8 0,98 0.86
0.1/25 | 0.46 0.59  0.66 0.59
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0.05/100 | 0.36 0.45  0.51 0.46

Table III contains the efficiencies of the H&llows.estinator with

respect to the covariamce estimator (2.3).

Table IXII: (asymptotic varianmce of <covariance estimator)/
(asymptotic variance of Mallows estimator), (elltlz) refers to the
carrier distribution, (32/122) denotes the error distribution (see

(3.3))

32/122

8 /7,2 N(0,1) 0.1/9 0.1/25 0.05/100

0.1/9 1.06 1.07 1.05 0.99

1.17 1.18 1.15 1.07

I

|
N(0,1) | 1,00 1,00 0.97 0.92

I

0.1/25 |

I

0.05/100 2.03 2.02 1.98 1.89

As the carrier distribution gets heavier tails the covariance
estimator is outperformed by the Mallows estimator. But im most
cases the relative loss compared to the Mallows estimator is not
serious,

It should be noted that the robust estimator based on

covariance is pot intended as a replacement for other bouaded
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influence fitters. Its weight function (se; (2.4)) has the
appealing feature that the response variable and the carriers are
interchangable., All possible choices of “the response” can be
easily fitted. In some situations this can be helpful.

Table IV finally shows the gross—error sensitivities of the
different estimators together with their asymptotic breakdown
points, The gross—error sensitivity is defined as the maximum of
the (Euclidian norm) of the influence curve (see Hampel (1974)) and
therefore serves as a description of the behavior under deviations
from the central model. In a sense we could call these our tools of

measuring the resistance of the estimators.

Table 1IV: gross—error sensitivity and breakdown point under
standard Gaussian error distribution, (‘1"12) refers to the

carrier distribution (see (3.3))

estimators
| Covariance Mallows Hampel-Krasker
| breakdown points
| 0.16 0.31 0.50
clltlz | gross error sensitivities
N(O,1) | 3.34 3.40 2.94
0.1/9 ‘ 2.86 2.66 2.22
0.1/28 | 2.63 2.18 1.73
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0.05/100 | 2.99 2.07 1.64

(for the last two columns see Maronna, Bustos and Yohai (1979),

Table 4)

The asymptotic optimality property of the Hampel-Krasker
estimator is clearly visible in Table IV -- that particular
estimator minimizes the gross—error sensitivity under a fixed
asymptotic variance (all of this at the central model). This is

exactly the reason why we are interested in using it.

3.2 RESULTS OF A SIMULATION EXPERIMENT

Table V contains empirical variances of the regression
estimators (2.3) for samples of size 20, The weight function u() is
described at the beginning of Section 3 and the model is described

in (3.3).

Table V: empirical variances of nllz b (see (2.3)) for samples of

size n=20, (31/112) refers to the carrier distribution, (czltzz)

- -

denotes the error distribaution (see (3.3)) :ZJJ
—

lz/fzz e
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/1,2 ] NO,1) 0.1/25 0.05/100
- I .
. N(0,1) | 1.17 1.88 1.61 ‘
0.1/25 | 0.69 1.16  0.94 :
0.05/100 | 1.14  1.34 1.14
ﬁ 0.1/100 | 0.57  0.94 -
(The numbers in this table are based on 500 replicas and the
éj estimated relative errors are between 9% and 15%)
é{: A comparison with Table I shows that the asymptotic variance
E: is in all situations lower than the actual small sample variance.
- But otherwise the pattern in these estimated variances follows the
é: behavior of Table I, We do not have the corresponding numbers for .
!;E the Mallows estimator. A look at Table 5 ip Maronna, Bustos and
Yohai (1979) shows, however, that the step from asymptotic
variances to small sample values very closely follows the behavior
X we have seen in our numbers. It therefore appears that the
vj asymptotic theory is a good enough approximation to the small
sample (n=20) behavior,
As pointed out in Maronna, Bustos and Yohai (1979) the
) distribution of the estimated regression coefficient is apparently ;,~
5; non-Gaussian in a lot of sampling situations. This makes the ';i
;; comparison between different estimators more difficult since the 3#
* variance -- or mean-square—error -— might not be the criterion to v
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use. From our simulation studies it appears that the distribution

of the slope estimator is heavier tailed that a Gasssian. This is

T

true in the case of the covsriance estimator for either s

"contaminated® carrier distribation or a beavier tailed error
distribution.

We would finally like to point to a future research topic.
Donoho and Huber have recently pointed out the intuitive appeal of
the small sample breakdown point (see Donoho aand Huber (1983) aand
Huber (1984)) and it would be useful to study this aspsct of our
estimators. In the case of regression these studies will not be
: simple, however, since the breakdown point will presumably depeand

on the actual carrier values.

4. CONCLUSIONS AND AN EXAMPLE

We have discussed an approaeb to robust regression estimation
based on robust covariance estimation. We have seea in Section 2
that if we adopt an affine equivariant M-estimator for the
covariance side, we do nothing else but a weighted least squares
approach om the regression side. The weights depend on two
quantities:

(1) standardized residusl

(2) standardized norm ian the carrier space.
Both of these are estimated robustly and the sum of their squares

is the quantity that matters. This particular form of the weight
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function is rather nnique and symmetric with respect to the notions
“response” and “explanatory”. This symmetry makes the choice
attractive, The covariance estimator fits a linear model to the
bulk of the data, Points far out in the space of explanatory
variables are identified as not belonging to the majority of the
data just as are points which do not fit the linear structure well,
This is the primary difference to other bounded influence methods
which try to identify only the second class of outliers.

Our particular estimator seems to downweights points far out
in the carrier space too much. This can possibly be corrected by
using a different weight function,

Let us finally look at an example. We choose the stack loss
data given in Daniel and Wood (1982, p. 61) involving three

independent variables

x4 air flow
Xy = cooling water temperature

and x3 = acid concentration.

The response variable is the stack loss. The sample size n is 21,
For our covariance estimator we use the weight function u(x) =
e (x)/x (x20), where eg () = min(k, max(-k,x)) is Huber's ¢~
function, The tuning constant kX is chosen as 5.0,

On that particular data set the weights determined by the

covarisnce estimator after 20 jteratioas turn out to be small for
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the first four and the last point., Figure I shows a plot of the
residuals of this fit against the first variable x;. The weight is
. indicated by the area of the point, We can identify the § ountlying
S points and we can slso appreciate the comment made by Daniel & Wood
that one of these points fits the plane determined by the rest
quite well.

The final conclusion of Daniel and Wood is that Xlz (or x4 x;)
should be included and that x3 can be dropped. Our analysis
supports those findings and in fact recovers the fimal fit given by
Daniel & Wood.
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